+7 (499) 077-0009 [email protected]

Недавно столкнулся с интересной задачкой. Позволю себе предложить и Вам над ней поразмыслить. Не уверен, что подобное встречалась где-нибудь раньше, поэтому, если Вы увидите в ней какую-то известную проблему, освещенную в научной литературе, буду признателен за предоставленную информацию. Какое-то вычислительное решение мне получить удалось, правда, достаточно изящным его не назовешь, и, поскольку, целью здесь является побудить читателя к самостоятельному поиску, я не буду его сейчас публиковать.

Итак, задача вполне себе житейская.

Некий Мужик занимается перепродажей коров: он скупает их за фиксированную небольшую цену a рублей у местного населения и пытается продать с наценкой посетителям рынка. Предположим для простоты, что покупатели по своей платежеспособности делятся на n классов, и, что любому, подошедшему к Мужику покупателю из k -го класса, он продает любую из имеющихся у него коров с наценкой xk-тое рублей. Будем считать, что появление покупателя каждого класса описывается пуассоновским процессом с неким, характерным для этого класса нагрузочным параметром lk-тое. Если в момент появления покупателя у Мужика нет коров, то первый не становится в очередь, а удаляется восвояси и обратно уже не возвращается. Задачи бы попросту не было, если бы не два правдоподобных условия:

1) Каждая корова, купленная Мужиком у населения проедает за единицу времени корма на u рублей, поэтому держать большой запас коров не выгодно;
2) Мужик может всегда отправить с попутчиком в деревню просьбу привести еще коров, однако выполнение этой просьбы хотя и бесплатно, но требует T времени;
3) Ввиду сделанных оговорок, Мужик может и не продать корову, если их у него мало, а шанс встретить клиента побогаче достаточно велик или наоборот продать в убыток из излишков запаса — лишь бы зря не кормить.

Какова оптимальная на длительном периоде стратегия Мужика при почти бесконечном начальном капитале?